On condition numbers in hp-FEM with Gauss-Lobatto Based Shape Functions

ثبت نشده
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Higher Order Approximation for Nonlinear Variational Problems in Nonsmooth Mechanics

This paper is concerned with the hp-version of the finite element method (hp-FEM) to treat a variational inequality that models frictional contact in linear elastostatics. Such an approximation of higher order leads to a nonconforming discretization scheme. We employ Gauss-Lobatto quadrature for the approximation of the nonsmooth frictiontype functional and take the resulting quadrature error i...

متن کامل

Adaptive hp-FEM for the Contact Problem with Tresca Friction in Linear Elasticity: The Primal Formulation

We present an a priori analysis of the hp-version of the finite element method for the primal formulation of frictional contact in linear elasticity. We introduce a new limiting case estimate for the interpolation error at Gauss and Gauss-Lobatto quadrature points. An hp-adaptive strategy is presented; numerical results shows that this strategy can lead to exponential convergence.

متن کامل

Hp Fem for Reaction-diiusion Equations I: Robust Exponential Convergence Seminar F Ur Angewandte Mathematik Eidgenn Ossische Technische Hochschule Ch-8092 Z Urich Switzerland Hp Fem for Reaction-diiusion Equations I: Robust Exponential Convergence

A singularly perturbed reaction-diiusion equation in two dimensions is considered. We assume analyticity of the input data, i.e., the boundary of the domain is an analytic curve and the right hand side is analytic. We show that the hp version of the nite element method leads to robust exponential convergence provided that one layer of needle elements of width O(p") is inserted near the domain b...

متن کامل

Time-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions

This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...

متن کامل

Generalized Gauss-Radau and Gauss-Lobatto formulas with Jacobi weight functions

We derive explicitly the weights and the nodes of the generalized Gauss-Radau and Gauss-Lobatto quadratures with Jacobi weight functions. AMS subject classification: 65D32, 65D30, 41A55.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001